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Abstract

It is often necessary to evaluate measured features of an
image with respect to estimated properties of noise
incorporated with the image values.  In some cases,
differential geometric methods lead to erroneous decisions
arising from the assumption of linearity of the noisy
feature space.  This paper introduces new work in
multiscale image statistics, a local framework that
supports adaptive measurement of image structure with
unknown and often non-stationary noise functions.
Furthermore, it presents directional local statistics that
enable the local normalization of feature measurement,
reducing biases in noise measurement introduced by the
underlying image geometry.  Such measurements have
applications in nonlinear filtering, texture analysis, and
image segmentation.

1.  Introduction and Background

When digital images are considered as arrays of
observations made of an underlying scene, the vocabulary
and calculus of statistics may be applied to their analysis.
If an image is subject to noise in pixel measurement, it
should be presented within the context of either known or
computed properties of the pixel values.  These properties
include the sample size or raster resolution and other
statistics such as the variance of the additive noise.

This is an introduction to multiscale image statistics.
It presents central moments of the local probability
distribution of intensity values.  It assumes that images are
composed of piecewise ergodic regions (that is, piecewise
contiguous regions where spatial averaging may be traded
for repeated measurement) for the construction of
multiscale statistics.  This approach outlines the
generation of the central moments of the local intensity
histogram of any arbitrary order.  Properties of some of
these moments are explained, their behaviors are
compared with other image processing operators, and the
multiscale central moments are generalized to images of
two dimensions.  Directional versions of these multiscale
statistics are also developed, and their future uses in the
normalization of feature measurements are discussed.

1.1.  Statistical Analysis

Statistical pattern recognition is a discipline with a
long and well-established history.  Segmentation and
filtering strategies based on local and global neighbor-
hood statistics are well documented (e.g., Duda [6] or Jain
[13]).  Filters founded on the theory of Markov processes
(Markov Random Fields) [11, 2] as well as expectation-
maximization methods [5] also have a long history.
Geiger and Yuille provide a framework for comparing
these and other segmentation strategies in their survey of a
variety of different algorithms [10].

Typically, statistical methods in image processing
employ the distribution of intensities computed at the
maximum outer scale of the image.  That is, the
histograms, mixture models, or probability distribution
approximations are computed across the whole image,
including all pixel values equally.  Exceptions to this
generalization include the contrast enhancement methods
for adaptive histogram equalization (AHE).  AHE and its
derivatives (Contrast limited AHE (CLAHE), and
Sharpened AHE or (SHAHE)) construct local histograms
of image intensity and compute new image values that
generate an equalized local probability distribution. [21,
3].  Other exceptions include Markov random fields [11]
and sigma filters [17].  Questions often arise over the
priors used in sigma filters and smoothing based on
Markov random fields.  Other questions arise over the
selection of the neighborhood function.

1.2.  Directional Analysis

Local directional image analysis techniques
(including the Kirsch, Sobel, and Gabor filters) are
described in most introductory texts on image processing
(e.g., [13]).  Of greater interest is the more recent
development of scale-space representations along with
their differential invariants.  Notably, researchers such as
Koenderink [14,16], ter Haar Romeny [22,23], Florack
[8,9], Lindeberg [18,19], and Eberly [7] have contributed
many papers on scale space and the invariances of scale-
space derivatives.  Perona noted that directional
derivatives of arbitrary order can be constructed through
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linear combinations of scale-space derivatives [20].
However, this steerable property is not limited to the
Gaussian as a filter function and holds for any kernel
whose n-th order derivative exists [19].

The Hessian and other matrix forms have been used
extensively in the analysis of the height fields of images
and other 2-manifolds representing solid shape.
Koenderink describes the detection of principal curvature
directions and the subsequent extraction of ridges of 2-
manifolds in 3-space [15].  Gueziec and Ayache extract
ridges of principal curvature as aids in registration of 3D
datasets [12].  In 2D, Whitaker uses the Hessian in his
nonlinear analysis to find medial axes [26].  Similarly,
Lindeberg uses the windowed second-moment matrix, a
linear algebraic operator in the analysis of image texture
[18].  Weickert applies this operator in nonlinear filtering
of highly figured data [24].

The approaches described above are not easily made
invariant with respect to linear functions of image
intensity, nor are they easily generalized to multivalued
functions when the individual values cannot be considered
a vector value.  What is desired is a method that is
invariant to transformations such as changes in contrast or
gain and shifts of the background or baseline intensity.  In
this research, multiscale directional means and directional
variances of intensity are derived from their basic
definitions.  Singular value decomposition of the resulting
directional covariance matrix produces eigenvalues and
eigenvectors that reflect image structure.  These
eigenvalues have the desired invariances with respect to
rotation, translation, and linear functions of intensity.  The
work presented in this paper diverges from the more
common study of the local differential structure of images.
It investigates the use of statistics of local intensity
distributions to illuminate image structure.

1.3.  Local Statistics of Image Intensity

As with most statistical pattern recognition systems,
this research is based on the assumption that the input

signal follows a Gibbs distribution.  Stated loosely, this
implies that the value for the intensity at a particular
location has compact local support.  Under these
conditions, it is expected that a scaled derivative
measurement at a particular location or pixel is supported
by the local neighborhood of surrounding pixels.
Similarly, in the context of local statistics of image
patterns, a statistical measurement is expected to be
consistent over a local neighborhood.  Modest changes in
the size and the location of the measurement region should
induce smooth changes in the extracted statistics.

Consider the lozenge shaped object in Figure 1.  The
foreground pixel intensity has a mean brightness of 64
units, and the background has a mean of 0 units.  The
image has uncorrelated Gaussian distributed additive
“white” noise, zero-mean with a standard deviation of 16
units.  The image is 256 × 256 pixels.  If one considers the
entire distribution of brightness levels throughout the
image, the result is the histogram on the right side of
Figure 1.  Notice the asymmetry of the distribution.  The
global nature of the histogram limits the conclusions
drawn from generalizations of the entire image.

However, if distributions of local neighborhoods
within the image are considered, more specific
conclusions can be drawn, and conjectures can be made
that accurately describe the geometry of the image.
Consider the same image with histograms extracted not
from the whole image, but from individual regions.
Figure 2 shows five histograms of five local regions from
the image.  When the local region is taken from only the
foreground or only from the background intensities, a
simple distribution with a single mode arises.  When the
local neighborhood is evenly balanced between object and

Figure 1.  Test figure with global histogram.  Left: Test figure
is 256 × 256 with a background pixel intensity of 0 and a
foreground value of 64.  Additive uncorrelated noise has
variance of 256.  Right:  the global histogram shows the
asymmetric bimodal distribution of pixel intensities

Figure 2. Test figure with local histograms.  Histograms of
pixel intensities shown for the local regions depicted by the
gray circles.  Note the changing symmetry of the local
histograms depending on the overlap of the neighborhood,
the figure, and the background.
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background, a symmetric bimodal distribution is
generated.  Finally, when the number of foreground and
background pixels is not evenly balanced, a skewed
distribution results, with the skew favoring the pixel
values that appear in greater number.

As the sample neighborhood smoothly varies its
location, certain patterns arise.  For example, a local
region with a balanced bimodal distribution of intensities
suggests a boundary between two regions.  As the location
of the local sampling region is perturbed, nearby locations
where similar conditions of balanced bimodal intensity
distributions are exposed.  Following the set of all
connected loci where this condition is met will extrude a
perimeter where boundariness can be evaluated.
Moreover, the histograms themselves suggest a means of
determining the strength of that boundary, even relative to
the noise in the image.  The separation between the two
modes can be captured and evaluated relative to the
spread or dispersion of intensity values about the modes.

While the combined set of local histograms can be
illuminating, it is both inconvenient and unwieldy to
generate and analyze a local histogram for each pixel in
the image.  A more compact description of the distribution
of local image intensities is desired.  One means of
describing any distribution of samples is through the
generation of its central moments, a series of descriptive
statistics of the sample set.  In the case of image analysis,
multiscale image statistics not only capture the local
intensity distribution, they can also be calculated directly
from the image without the intermediate step of first
generating local histograms.

2.  Multiscale Statistics

Without a priori knowledge of the boundaries and the
object widths within an image, locally adaptive multiscale
statistical measurements are required to analyze the
probability distribution across an arbitrary region of an
image.  This section presents multiscale image statistics, a
technique developed through this research for estimating
central moments of the probability distribution of
intensities at arbitrary locations within an image across a
continuously varying range of scales.  Related work on the
first order absolute moment has been presented previously
by Demi [4].  My research is not a continuation, but rather
a separate formal presentation of the general form of
multiscale image statistics.

Consider a set of observed values, I(x) ⊂ R1, where
for purposes of discussion the location x ∈ R1, but can
easily be generalized to R

n
.  The values of I(x) may be

sampled over a local neighborhood about a particular
location x using a weighting function, ω(x), and the
convolution operation, I(x) ⊗ ω(x), where
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To avoid a preference in orientation or location, the
sampling function should be invariant with respect to
spatial translation and spatial rotation.  Arguments put
forward by Babaud [1], Koenderink [14], ter Haar
Romeny [11], Florack [9], Witkin [27], and others suggest
that the optimal sampling function is the Gaussian G(σ,x),
where the parameter σ is the sampling aperture.
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Throughout this section, multiscale statistics will be
graphically illustrated using a step edge with additive
noise as an input function (see Figure 3).

Figure 3.  An example input Signal I(x) - a noisy 1D step.

2.1.  Multiscale Mean

Let the scale-space measurement comprised of a sum
of the original image intensities weighted by a Gaussian
sampling kernel be the average or expected value of I(x)
over the neighborhood with an aperture of size σ.  Thus:
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where 〈I(x);σ〉 is read as mean or the expected value of
I(x) measured with aperture σ.

Figure 4 shows the multiscale mean operator applied
at four different scales.  As with all scale-space operators,
one must balance noise suppression and precision.

2.2.  Multiscale Variance

The local variance over the neighborhood specified
by the scale parameter is easily generalized from the basic
definition of central moments.  Equation (4) describes the
local variance of intensity about a point x at scale σ.
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Figure 5 shows the multiscale variance operator applied at
four different scales.  Note that the maximum of the
variance function localizes about the discontinuity and
remains in the same location as scale changes.  This
behavior is similar to the gradient magnitude operator.
Both are invariant with respect to rotation and translation,
and both have similar responses to a given input stimulus.

2.3.  Other Multiscale Central Moments

The general form for the multiscale central moment
of order k of I(x) is given by

( )
( )

( )∫
∞

∞−
τσµ−ττ−σ=

σµ−⊗σ=

σσµ−=σµ

d)|x()(I)x,(G

)|x()x(I)x,(G

;)|x()x(I)|x(

k

I

2

I

k

I
)k(

I

(5)

Figures 6 and 7 show the multiscale responses of the 3rd
and 4th order central moments of the function from Figure
3 respectively.  The 3rd order central moment (reflecting
skew) has a zero crossing at the locus of the discontinuity
that persists through changes in scale.  Similarly, the 4th
order moment has a local minimum at the discontinuity
which also persists through scale.

2.4.  Multiscale Statistics of 2D Images

Extending the construction of multiscale statistics to
images of two dimensions is straightforward.  The central
moments are constrained to be invariant with respect to
rotation as well as translation.  These constraints specify
an isotropic Gaussian as the sampling kernel.  The general
form for the k-th multiscale central moment for 2D images
is

a.  σ = 1 b.  σ = 16

c.  σ = 24 d.  σ = 32

Figure 7. )|x()4(

I
σµ , 4th order central moment operator

applied to the function from Fig. 3. (a. σ = 1, b. σ = 16, c.
σ = 24,d.  σ = 32).

a.  σ = 1 b.  σ = 16

c.  σ = 24 d.  σ = 32

Figure 4.  1D multiscale mean operator µI(x|σ) for the input
function shown in Fig. 3.  Four different apertures are
applied (a.  σ = 1, b.  σ = 16, c.  σ = 24, d.  σ = 32).

a.  σ = 1 b.  σ = 16

c.  σ = 24 d.  σ = 32

Figure 5. )|x()2(

I
σµ , 1D multiscale variance operator

for the function in Fig. 3.  Four different apertures are
applied.  (a.  σ = 1, b.  σ = 16, c.  σ = 24, d.  σ = 32).

a.  σ = 1 b.  σ = 16

c.  σ = 24 d.  σ = 32

Figure 6.  )|x()3(

I
σµ    1D multiscale 3rd order central

moment operator with four apertures for the function in
Fig. 3.  (a.  σ = 1, b.  σ = 16, c.  σ = 24, d.  σ = 32).
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2.5.  2D Examples of Multiscale Image Statistics

In the examples presented here, the term signal to
noise ratio (SNR) will refer to the difference of the
foreground intensity and the background intensity divided
by the standard deviation of the additive spatially
uncorrelated noise.  Figure 8 shows a noisy computer
generated image of a teardrop shape.  The measured SNR
per pixel within that image has been set to 4:1 on a raster
resolution of 128 x 128 pixels.

The images of Figure 9 are four local statistical
measurements made of the teardrop using an aperture
whose spatial aperture is 3 pixels wide.  Figure 9a shows
the local mean values.  Figure 9b shows the measured
local variances.  Figures 9c and 9d show the local third
and fourth moments respectively.

Figure 9 demonstrates aspects of multiscale statistical
representations that are significant with respect to image
processing tasks.  The mean image is the input processed
with a Gaussian filter.  The variance image reflects edge
strength and is analogous to the squared multiscale
gradient magnitude of intensity.  The third order local
moment measurement has a locus of zero crossings along
the boundary of the teardrop shape.  This behavior is
similar to the response of the Laplacian of the Gaussian on
the same image.

3.  Directional Statistics

The geometry of the image introduces important
directional components that make directional sampling
possible.  Of interest then is a means of sampling in the
direction in which the geometry of the image contributes
the least bias to the statistical calculation, capturing the
probability distribution of the noise rather than the
structure of the image.  In scalar-valued images this
typically means sampling in the direction of the isophote.

The direction of the tangent to the isophote is a sampling
direction where the image can be considered to be locally
mean-ergodic.

Minimizing the value of directional local statistics by
repetitive application of directional statistical operators
across all orientations is not desirable.  An alternative is to
establish a matrix that captures both local geometry and
local image statistics.  Once captured, this structured
statistical operator can be analyzed for its eigenvalues and
eigenvectors.  Such an approach yields directional
statistical analysis through a compact set of covariances.

3.1.  Multiscale Directional Means

How can an image be sampled along a particular
locus of minimal variation?  Consider the local directional
mean of an image to be a Gaussian weighted sample along
a line.  A multiscale directional mean µθ,I(p | σ) is defined
as the integral along a line l through the point p = [px, py],
(that is l is defined parametrically as lx(ρ) = ρ cosθ - px

and ly(ρ) = ρ sinθ - py) such that
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Define Gθ(σ,p) to be a Gaussian distribution along a line s
through the origin (i.e., parametrically, s is sx(ρ) = ρ cosθ
and sy(ρ) = ρ sinθ).  Gθ(σ,p) can be expressed as
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Figure 8.  A 128 × 128 pixel Teardrop (SNR 4:1).

a.  k = 1 b.  k = 2

c.  k = 3 d.  k = 4

Figure 9.  Local statistical measures (k = order) of the
teardrop from Fig. 8 (a:  local means, b: local variance,
c and d: local moments of the 3rd and 4th order).
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(7) can be simplified using the following notation:

µθ,I(p | σ) = Gθ(σ, p) ⊗ I(p) (9)

3.2.  Multiscale Directional Covariances

To generalize to second order directional moments,
the linear directional means must be integrated over the
sampling angle.  Further, the directional variances must be
weighted for sampling in either cardinal x direction or the
cardinal y direction as provided by the original Cartesian
coordinate axes.  This results in the following sampled
variance in the x-direction:
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Similarly, the variance in the y-direction is described as:
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For simplicity of notation, both the position parameter p
and the scale parameter σ have been dropped from the
representation Vxx and Vyy.  The position and the scale or
measurement aperture are always implicit in these
measurements.

The covariance between intensity values measured in
the x-direction and in the y-direction is described as:
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Taken together, these statistics describe a local
feature space, centered about each pixel and normalized
by the directional mean values.  The resulting centered
distribution has as its variance a 2 × 2 matrix or tensor:
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3.3.  Eigenvalues and Eigenvectors

Since this matrix is symmetric and assuming that the rank
of this matrix is not singular (i.e., the noise or variation in
the image is not limited completely to a single directional
bias), a matrix D can be found that this diagonalizes this
covariance matrix.  D can be shown to be a rotation.
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The eigenvalues Vuu and Vvv represent the variance of the
directionally weighted intensity values in the direction of
least and greatest variation respectively.

The direction α of the rotation matrix D indicates the
direction of the two eigenvectors.  Each eigenvector is
oriented either tangentially along or perpendicular to the
direction of least variance (e.g., tangent to object
boundaries).  The resulting eigenvectors of local image
variance form a local coordinate frame or statistical gauge
for geometrically invariant analysis methods.

Figure 10. shows a noisy 256 x 256 pixel image of a
pair of curved objects.  The measured SNR per pixel has
been set to 4:1.

Figure 10.  A 256 × 256 pixel figure (SNR 4:1)

The images of Figure 11 are the three local
covariance measures statistical measurements made of the
objects in the image using an aperture whose spatial
aperture is 6 pixels.  Figure 11a and Figure 11c show the
weighted variance in the x and y-directions respectively.
Figure 10b shows the related covariance between the
sampled intensities when weighted in both x and y.

a. b. c.
Figure 11.  Local statistical measures of Fig. 10 (Left a:
Vxx, Center b: Vxy, and Right c. Vyy) (σ = 6)

Note the variations among the three images.  In particular,
compare Figure 11a with Figure 11c.  Where the object
boundary is perpendicular to the sampling direction, the
response to the variance function is relatively higher.
Where the sampling direction tangentially grazes the
sampling direction, a relatively lower response is
exhibited.  With three covariance values at each pixel, a
local covariance matrix is suggested.  Diagonalizing this
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tensor image generates the eigenvalues in Figure 12.   The
eigenvalues show the weighted variance tangentially along
or perpendicularly across the direction of greatest
ergodicity, or constancy.  In most cases this direction is
either along or it is across the object boundaries.  Figure
11 also shows the limitations imposed by discrete images
and the subsequent tolerances imposed by the sampling
theorem.  In an ideal case, the eigenimage Vvv should
reflect only the variance of the background noise.
However, the limited resolution of the available discrete
methods introduces some isotropy into the sampling
kernels yielding a ghost image.  These values represent
some contribution of the underlying image geometry to
the generated statistical measurements.

3.4  Invariance w/rt linear functions of intensity.

The selection of the Gaussian function as the
sampling kernel was motivated by a desire for the
sampling filter to be invariant with respect to particular
transformations of x.  It may be desirable to analyze the
sampled measurements of the array of I(x) values in
dimensionless units (i.e., invariant with respect to certain
transformations of I).  Dimensionless measurements may
be obtained by normalizing the central moments with
powers of the square root of v0, the variance of the input
noise (if known).  That is:

Normalized k-th order moment:  ( )k0

)k(
I

v

)|x()k(
I

)|x(
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=σγ (15)

Without a priori knowledge of v0, the normalization
suggested in (15) can be implemented with Vvv as the
prior.  This value is a multilocal measure of the local
variance of image intensities where biases introduced by
the underlying image geometry have been suppressed.

Normalized k-th order moment:  ( )kvv
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The results are dimensionless statistics that are
invariant with respect to geometric operations such as
translation and rotation, as well as linear functions of
intensity (scaling, windowing, and leveling).

5.  Applications and Future Work

Figure 13 shows zero-crossings of )|()3(

I
σµ p and its

use as a boundary localizer.  Interestingly, this operator
closes boundaries in the presence of non-stationary
changes in brightness and contrast.  The contours
extracted from the lower portions of the MRI of the head
show this capability.

Figure 13.  Test Images and zero crossings of )|()3(

I
σµ p

Directional variances can also be combined into
dimensionless metrics for texture analysis.  A measure of
anisotropy can be generated by mapping Lindeberg's
anisotropy methods [18] from the partial derivatives of the
windowed second-moment matrix to Vxx, Vyy, and Vxy.
The resulting measure is shown in (17) and are graphically
applied to a test image in Figure 14.

Anisotropy:
yyxx

2
xyyyxx

2
yyxx

VV

)VVV(4)VV(
Q̂ +

−−+
= (17)

The future of this research will lie in the application
of multiscale statistics to multivalued data.  Research
areas such as multimodal registration and multimodal
segmentation require metrics that are normalized across
multiple incommensurable values.  Where Euclidean
metrics are available, vector algebra may be employed.  In
the absence of such linearity, the calculus of statistics (and
the use of multiscale image statistics) is appropriate.

Figure 12. Eigenvalues of Fig. 11. (Left:  Vuu, Right:  Vvv,)



8 T. Yoo

6.  Conclusion

Multiscale image statistics are a new means of
capturing image geometry.  Through scaled isotropic and
directional statistical measurements, properties of local
image structure can be extracted.  Moreover, these
measurements are invariant with respect to rotation,
translation, and zoom, and they can be normalized to be
invariant with respect to linear functions of intensity.
These properties may support the analysis of images
where vector valued methods are inappropriate (i.e., in
statistical comparisons of multimodal datasets) and in
modalities such as MR where there are non-stationary
properties to image noise.  Multiscale image statistics are
new and important tools in image processing.
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Figure 14.  Segmentation of a textured test image

with anisotropy metric Q̂


